Predefined Model Integration
After completing the supplier integration, the next step is to integrate the models under the supplier.
First, we need to determine the type of model to be integrated and create the corresponding model type module
in the directory of the respective supplier.
The currently supported model types are as follows:
llm
Text Generation Modeltext_embedding
Text Embedding Modelrerank
Rerank Modelspeech2text
Speech to Texttts
Text to Speechmoderation
Moderation
Taking Anthropic
as an example, Anthropic
only supports LLM, so we create a module
named llm
in model_providers.anthropic
.
For predefined models, we first need to create a YAML file named after the model under the llm
module
, such as: claude-2.1.yaml
.
Preparing the Model YAML
It is recommended to prepare all model configurations before starting the implementation of the model code.
Similarly, you can refer to the YAML configuration information in the directories of other suppliers under the model_providers
directory. The complete YAML rules can be found in: Schema1.
Implementing Model Invocation Code
Next, create a Python file with the same name llm.py
under the llm
module
to write the implementation code.
Create an Anthropic LLM class in llm.py
, which we will name AnthropicLargeLanguageModel
(name can be arbitrary), inheriting from the __base.large_language_model.LargeLanguageModel
base class, and implement the following methods:
-
LLM Invocation
Implement the core method for LLM invocation, supporting both streaming and synchronous responses.
When implementing, note to use two functions to return data, one for handling synchronous responses and one for streaming responses. Since Python recognizes functions containing the
yield
keyword as generator functions, returning a fixed data type ofGenerator
, synchronous and streaming responses need to be implemented separately, like this (note the example below uses simplified parameters, actual implementation should follow the parameter list above): -
Precompute Input Tokens
If the model does not provide a precompute tokens interface, return 0 directly.
-
Model Credentials Validation
Similar to supplier credentials validation, this validates the credentials for a single model.
-
Invocation Error Mapping Table
When a model invocation error occurs, it needs to be mapped to the
InvokeError
type specified by Runtime, facilitating Dify to handle different errors differently.Runtime Errors:
InvokeConnectionError
Invocation connection errorInvokeServerUnavailableError
Invocation service unavailableInvokeRateLimitError
Invocation rate limit reachedInvokeAuthorizationError
Invocation authorization failedInvokeBadRequestError
Invocation parameter error
For interface method descriptions, see: Interfaces, and for specific implementation, refer to: llm.py.
Footnotes
-
Provider
provider
(string) Supplier identifier, e.g.,openai
label
(object) Supplier display name, i18n, can be set inen_US
English andzh_Hans
Chinesezh_Hans
(string) [optional] Chinese label name, ifzh_Hans
is not set, it will default toen_US
.en_US
(string) English label name
description
(object) [optional] Supplier description, i18nzh_Hans
(string) [optional] Chinese descriptionen_US
(string) English description
icon_small
(string) [optional] Supplier small icon, stored in the_assets
directory under the respective supplier implementation directory, follows the same language strategy aslabel
zh_Hans
(string) [optional] Chinese iconen_US
(string) English icon
icon_large
(string) [optional] Supplier large icon, stored in the_assets
directory under the respective supplier implementation directory, follows the same language strategy aslabel
zh_Hans
(string) [optional] Chinese iconen_US
(string) English icon
background
(string) [optional] Background color value, e.g., #FFFFFF, if empty, the default color value will be displayed on the front end.help
(object) [optional] Help informationtitle
(object) Help title, i18nzh_Hans
(string) [optional] Chinese titleen_US
(string) English title
url
(object) Help link, i18nzh_Hans
(string) [optional] Chinese linken_US
(string) English link
supported_model_types
(array[ModelType]) Supported model typesconfigurate_methods
(array[ConfigurateMethod]) Configuration methodsprovider_credential_schema
(ProviderCredentialSchema) Supplier credential schemamodel_credential_schema
(ModelCredentialSchema) Model credential schema